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Short note

Influence of Coulomb correlations on the location of drip line,
single particle spectra and effective mass
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Abstract. A new systematic shift of the single-particle spectra of nuclei under the Coulomb interaction is
considered. This shift results from the interplay between the Coulomb interaction and strong interaction,
being greatly enhanced by the presence of the nuclear surface. This shift affects the position of the calculated
proton drip line decreasing the maximal Z of a nucleus near the drip line by several units. The same
mechanism is responsible for significant corrections to the mass difference of the mirror nuclei and to the
effective proton mass.

PACS. 21.10.Sf Coulomb energies – 21.10.Dr Binding energies – 21.10.-k Nuclear energy levels

A study of the influence of the Coulomb interaction on the
properties of atomic nuclei is of crucial importance. The
main part of this influence is linked with the Hartree term
of the Coulomb energy which is proportional to Z2. Here
Z is the number of protons of a nucleus. On the other
hand, there exists a number of more subtle contributions
to the Coulomb energy related to the interplay between
the Coulomb interaction and nuclear forces. To illustrate
it one can use the famous Okamoto — Nolen — Schiffer
anomaly in the binding energy differences of mirror nu-
clei which has attracted much interest during the last 3
decades [1]. While it was shown that there is a new many-
body mechanism, enhancing the contribution due to the
Coulomb interaction and based on the common feature of
a self-sustaining system, the presence of the surface. This
contribution, allowing for the main part of the anomaly,
has a specific Z dependence, being proportional to the
nuclear surface ∼ Z2/3 [2].

The main goal of this Letter is a study of impact of
this mechanism on the location of the proton drip line,
single-particle proton excitations and the proton effective
mass.

Within the density functional approach the ground
state energy E of nucleus is given by [3]

E = F0[ρp(r), ρn(r)] + Fc[ρp(r), ρn(r)]. (1)

Here F0 is the main part of the functional dependent
symmetrically on the densities ρp, ρn and related to
isospin symmetry conserved forces. While Fc is due to the

Coulomb interaction. We neglect easy to include terms:
the contribution due to the proton-neutron mass differ-
ence and contribution of the charge symmetry breaking
(CBS) forces [4]. The densities,

ρp(r) =
∑
l

nlp|φlp(r)|2; ρn(r) =
∑
l

nln|φln(r)|2, (2)

are the single particles densities of neutrons and protons,
respectively, with nlp, φ

l
p and nln, φ

l
n being the correspond-

ing occupation numbers and single-particle wave func-
tions. The well-known Skyrme functional can be consid-
ered as a possible realization of F0, while in that case Fc
is given by

Fc[ρp(r)] =
e2

2

∫
ρp(r1)ρp(r2)

1
|r1 − r2|

dr1dr2

− e2

2

∫
[χ0
p(r1, r2, iω) + 2πρp(r1)δ(r1 − r2)δ(ω)]

× 1
|r1 − r2|

dr1dr2dω

2π
. (3)

Here the first term on r.h.s is the Hartree term, the second
is the Fock term which, being taken in the Slater approx-
imation, equals to

−(3/4)(3/π)1/3e2

∫
ρ4/3
p (r)dr,

and χ0
p(r1, r2, ω) is the linear response function of the non-

interacting protons moving in a self-consistent field. But
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(3) is incorrect since it omits the term F corrc [ρp(r)] that
comes from the interplay between the Coulomb interaction
and the effective interaction Rlm(r1, r2) associated with
the strong nucleon-nucleon interaction. In the first order in
the Coulomb interaction, the Coulomb correlation energy
F corrc is given by [2]

F corrc [ρp(r)] = −e
2

2

∫
[χpp(r1, r2, iω)− χ0

p(r1, r2, iω)]

× 1
|r1 − r2|

dr1dr2dω

2π
, (4)

with χpp(r1, r2, ω) being the linear response function of
the protons of nucleus in question, disturbed by an exter-
nal electric field. The main contribution to F corrc comes
from the surface collective isoscalar excitations, the en-
ergies of that are much smaller then the energies of the
isovector excitations. While in the case of homogeneous
nuclear matter such a contribution is not strengthened,
and as a result, the Coulomb correlation energy given by
(4) is rather small. Thus, one can conclude that F corrc is
of surface origin, being mainly defined by the isoscalar
components of the effective interaction [2].

Now we turn to calculations of the shifts of the proton
single particle energies εlp under influence of the Coulomb
correlation energy. To do it we employ the Landau equa-
tion [5]

δE

δnlp
= εlp. (5)

It follows from (4,5) that the shift ∆εlp related to the
Coulomb correlation energy can be expressed as

∆εlp =
δF corrc

δnlp

= −e
2

2
δ

δnlp

∫
[χpp(r1, r2, iω)− χ0

p(r1, r2, iω)]

× 1
|r1 − r2|

dr1dr2dω

2π
. (6)

Here the variational derivative δχ0
p/δn

l
p has the simple

functional form

δχ0
p(r1, r2, ω)
δnpλ0

=
[
Gp(r1, r2, ω + εpλ0

)

+Gp(r1, r2,−ω + εpλ0
)
]

×φp∗λ0
(r1)φpλ0

(r2), (7)

with Gp(r1, r2, ω) being the Green function of Z noninter-
acting protons moving in the single particle nuclear poten-
tial. While δχpp/δnlp is given by the matrix equation

δχlm
δnlp

=
δχ0

l

δnlp
δpm

+
∑
k

[
δχ0

l

δnlp
Rlkχkm+χ0

l

δRlk
δnlp

χkm+χ0
lRlk

δχkm
δnlp

]
, (8)

with χlm being given by

χlm = χ0
l δpm +

∑
k

χ0
lRlkχkm. (9)

In (8,9) for the sake of brevity we omit the spatial integra-
tions. The effective interaction is chosen of the separable
form

R(r1, r2)lm = λ
dVl(r1)
dr

dVm(r2)
dr

δ(Ω1 −Ω2), (10)

where Vl(r) is the proton (neutron) single-particle poten-
tial. λ is chosen so that the dipole linear response has a
pole at ω = 0. This type of residual interaction has been
widely studied [3,8] and leads to a satisfactory description
of nuclear collective modes. The calculated ∆εlp are of the
order (0.2 − 0.3)MeV in either medium nuclei region or
heavy one, i.e. of the same magnitude as the Okamoto
— Nolen — Schiffer anomaly. It is useful to check these
results using simple approximations. The Coulomb corre-
lation energy, given by (4), can be expressed within the
local density approximation as

F corrc [ρp] =
∫
ρp(r)ec(ρ(r))dr. (11)

Here ec is the Coulomb correlation energy per proton.
Then the single-particle shift ∆εlp may also be written
in the following form

∆εlp =
∫
δF corrc [ρp]

δρp
|φ(r)l|2dr. (12)

The correlation energy ec has a very prominent positive
peak at the surface [2]. For simple estimations of ∆εp,
when the single particle energy εp is located in the vicin-
ity of the Fermi level, one can take ec(r) = −β a dF (r)/dr,
and ρp(r) = ρ0F (r), with ρ0 = 0.08 fm−3 being the pro-
ton number density in the central part of nucleus, while
F is the Fermi function

F (r) =
1

1 + exp((r −R)/a)
. (13)

Here R is the radius of a nucleus, the diffuseness a is cho-
sen to be 0.6 fm, and coefficient β ' 3MeV . As a con-
sequence of the taken approximation and after standard
transformations of the Fermi integrals one gets for middle
and heavy nuclei

∆εp '
βa

R
∼ (0.3− 0.4)MeV. (14)

Since corrections of the order of β(a/R)2 were dropped,
(14) slightly overestimates the magnitude of the shift. It is
seen from (14) that the contribution of the Coulomb cor-
relation energy compensates the one arising from the Fock
term. Thus, one can simply drop both the Fock term and
F corrc , taking into account only the Hartree term. Such a
procedure was postulated in [6,7]. Then, it is seen from
(14) that a systematic upward shift of this magnitude of
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the last occupied proton level in a nucleus near the proton
drip line equivalent to a shift of the calculated proton drip
line in the direction of decreasing Z by up to 5 units, see
for example [9].

Consider the variation ∆M due to the Coulomb in-
teraction of the proton effective mass M∗ in the case of
homogeneous nuclear matter. In that case, the single par-
ticle spectra depend on momentum p, while, as it follows
from (5) the effective mass is given by [5]

1
M∗

=
1
pF

dεp(p)
dp
|p=pF . (15)

Here pF is the Fermi momentum. To get the variation ∆M
of the effective mass M∗ one can use (15), replacing εp(p)
by the shift of the single particle energy defined by the
Coulomb interaction. As a result, one gets [10]

∆M

M∗(M∗ +∆M)

=
e2d

pF dp

∫ δχ0(q,iω)
δnp

(1−R(q, iω)χ0(q, iω))2

dqdω
q2(2π)3

. (16)

Here M∗ is the proton effective mass when the Coulomb
interaction is switched off. The derivative d/dp is taken at
p = pF . We shall consider the variation ∆M when sys-
tem under consideration is located in the vicinity of the
point where its bulk incompressibility tends to zero. This
resembles the conditions which take place around the nu-
clear surface. Thus, such a consideration gives possibility
of a qualitative estimate of the variation ∆M under influ-
ence of the Coulomb interaction in finite nuclei. One can
verify that

d

dp

δ

δnp
χ0(q, ω)|p→pF = − 4π

p2
F

δ(pF −|p + q|)δ(ω)p(p + q).

(17)
Upon substituting (17) into (16) one directly gets

1
M∗ +∆M

=
1
M∗

+
e2

2πpF

×
∫ 1

−1

x dx

(1−x)[1−R(q(x), 0)χ0(q(x), 0)]2
. (18)

In (18) we have adopted the shorthand notation q(x) =
pF
√

2(1− x). At the point the incompressibility van-
ishes the denominator (1 − Rχ0) vanishes as well when
x = 1 (q = 0) and the integral (18) diverges and thus the
effective mass vanishes M∗+∆M → 0. NB, such a diver-
gence appears only because of the presence of a surface
in the naive local density approximation [2]. This result
indicates that the Coulomb correlation energy in a self

sustaining nuclear system affects the proton effective mass
M∗ in a nontrivial manner. In finite nuclei this divergence,
which is related to the variation of the density at the sur-
face, is smoothed out [2]. The net result is that the proton
effective mass becomes smaller then the neutron effective
mass and smaller than the effective mass evaluated in the
absence of the Coulomb correlation energy. The relevance
of such an effect on the properties of a high accuracy nu-
clear density functional was discussed in [7]. Here we give
a theoretical ground for the origin of this effect.

In summary, we have considered the calculations of the
single particle spectra in nuclei and the shift of the single
particle levels under the influence of the Coulomb correla-
tion energy. A major part of the Nolen–Schiffer anomaly
is removed by this shift. At the same time the calculated
drip line is moved in the direction of decreasing Z. We have
also shown that the Coulomb correlation energy should be
taken into account when computing correction to the ef-
fective proton mass. We did not include in our analysis
however the CSB forces, which we left to a future anal-
ysis. They can lead to both volume and surface energy
terms in the nuclear density functional.
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